7 Days0Site 7 Days0
30 Days0Site 30 Days0
Total0Site Total0

Quantum Mechanics Note

Date: 2024/05/27
Last Updated: 2024-05-28T12:49:25.000Z
Categories: Physics
Tags: Physics, Quantum Mechanics
Read Time: 12 minutes

0.1 Contents

0.2 Probability Basics

0.2.1 Random Variable

A random variable XX is a function that maps the sample space Ξ©\Omega to the real number line R\mathbb{R}.

0.2.2 Probability Density Function

The probability density function f(x)f(x) of a random variable XX is a function that describes the likelihood of the random variable to take on a specific value.

0.2.3 Cumulative Distribution Function

The cumulative distribution function F(x)F(x) of a random variable XX is a function that describes the probability that the random variable takes on a value less than or equal to xx.

F(x)=P(X≀x)=βˆ«βˆ’βˆžxf(x)dx.F(x) = P(X \leq x) = \int_{-\infty}^x f(x) dx.

0.2.4 Expectation

The expectation of a random variable XX is the average value of the random variable.

<X>=βˆ«βˆ’βˆžβˆžxf(x)dx.<X> = \int_{-\infty}^{\infty} x f(x) dx.

0.2.5 Variance

The variance of a random variable XX is a measure of how much the values of the random variable vary.

Ξ”X2=<(Xβˆ’<X>)2>=<X2>βˆ’<X>2.\Delta X^2 = <(X - <X>)^2> = <X^2> - <X>^2.

0.2.6 Standard Deviation

The standard deviation of a random variable XX is the square root of the variance.

Ξ”X=Ξ”X2.\Delta X = \sqrt{\Delta X^2}.

0.2.7 Probability Amplitude

The probability amplitude ψ(x)\psi(x) of a random variable XX is a complex value function that the likelihood of the random variable to take on value xx is given by ∣ψ(x)∣2|\psi(x)|^2.

In other words, the probability density function f(x)f(x) is given by

f(x)=∣ψ(x)∣2.f(x) = |\psi(x)|^2.

0.3 Calculus Basics

0.3.1 Gaussian Integral

The Gaussian integral is given by

βˆ«βˆ’βˆžβˆžeβˆ’x2Οƒ2dx=πσ.\int_{-\infty}^{\infty} e^{-\frac{x^2}{\sigma^2}} dx = \sqrt{\pi}\sigma.

0.3.1.1 Odd Powers of xx in Gaussian Integral

The Gaussian integral with odd powers of xx is given by

βˆ«βˆ’βˆžβˆžx2n+1eβˆ’x2Οƒ2dx=0.\int_{-\infty}^{\infty} x^{2n+1} e^{-\frac{x^2}{\sigma^2}} dx = 0.

As this is an odd function, the integral is zero.

0.3.1.2 Even Powers of xx in Gaussian Integral

The even powers of xx in Gaussian integral can be calculated using Feynman's trick.

βˆ«βˆ’βˆžβˆžx2neβˆ’ax2dx=βˆ«βˆ’βˆžβˆž(βˆ’βˆ‚βˆ‚a)neβˆ’ax2=(βˆ’βˆ‚βˆ‚a)nβˆ«βˆ’βˆžβˆžeβˆ’ax2dx=(βˆ’βˆ‚βˆ‚a)nΟ€a\begin{align} \int_{-\infty}^{\infty} x^{2n} e^{-ax^2} dx &= \int_{-\infty}^{\infty} \left(-\frac{\partial}{\partial a}\right)^n e^{-ax^2} \\ &= \left(-\frac{\partial}{\partial a}\right)^n \int_{-\infty}^{\infty} e^{-ax^2} dx \\ &= \left(-\frac{\partial}{\partial a}\right)^n \sqrt{\frac{\pi}{a}} \end{align}

0.4 Wave Function

We can postulate that the state of a particle is described by a complex value wave function Ξ¨(x,t)\Psi(x, t), where xx is the position and tt is the time.

0.4.1 Born Rule

The probability density to find the particle at position xx is given by ∣Ψ(x,t)∣2|\Psi(x, t)|^2. And thus, the probability to find the particle in an measurable area AA is given by

P(A)=∫A∣Ψ(x,t)∣2dx.P(A) = \int_A |\Psi(x, t)|^2 dx.

0.4.2 Continuity Requirement of Wave Function

The wave function Ξ¨(x,t)\Psi(x, t) must be continuous and differentiable.

0.4.3 Normalizing Wave Function

The wave function Ξ¨(x,t)\Psi(x, t) defined on space XX is normalized if

∫X∣Ψ(x,t)∣2dx=1.\int_{X} |\Psi(x, t)|^2 dx = 1.

If the wave function is not normalized, and if A=∫X∣Ψ(x,t)∣2dxA=\int_{X} |\Psi(x, t)|^2 dx is finite and greater than 00, then the normalized wave function is given by

Ξ¨normalized(x,t)=Ξ¨(x,t)A.\Psi_{\text{normalized}}(x, t) = \frac{\Psi(x, t)}{\sqrt{A}}.

0.4.4 Superposition Principle of Wave Functions

If Ξ¨1(x,t)\Psi_1(x, t) and Ξ¨2(x,t)\Psi_2(x, t) are two wave functions, then the superposition of the wave functions is given by

Ξ¨(x,t)=c1Ξ¨1(x,t)+c2Ξ¨2(x,t),\Psi(x, t) = c_1 \Psi_1(x, t) + c_2 \Psi_2(x, t),

where c1c_1 and c2c_2 are complex numbers. And Ξ¨\Psi is also a wave function.

0.4.5 Interference of Wave Functions

The interference of wave functions is a phenomenon where two wave functions Ξ¨1(x,t)\Psi_1(x, t) and Ξ¨2(x,t)\Psi_2(x, t) interfere with each other to form a new wave function Ξ¨(x,t)\Psi(x, t).

Let Ξ¨(x,t)=Ξ¨1(x,t)+Ξ¨2(x,t)\Psi(x, t) = \Psi_1(x, t) + \Psi_2(x, t). Then the probability density of the new wave function is given by

∣Ψ(x,t)∣2=∣Ψ1(x,t)∣2+∣Ψ2(x,t)∣2+Ξ¨1(x,t)βˆ—Ξ¨2(x,t)+Ξ¨1(x,t)Ξ¨2(x,t)βˆ—|\Psi(x, t)|^2 = |\Psi_1(x, t)|^2 + |\Psi_2(x, t)|^2 + \Psi_1(x, t)^* \Psi_2(x, t) + \Psi_1(x, t) \Psi_2(x, t)^*

And the Ξ¨1(x,t)βˆ—Ξ¨2(x,t)+Ξ¨1(x,t)Ξ¨2(x,t)βˆ—\Psi_1(x, t)^* \Psi_2(x, t) + \Psi_1(x, t) \Psi_2(x, t)^* is usually called the interference term.

0.4.6 Classical Plane Wave

The classical plane wave is given by

Ξ¨(x,t)=Aeikxβˆ’iΟ‰t\Psi(x, t) = A e^{ikx - i\omega t}

where AA is the amplitude, kk is the wave number, and Ο‰\omega is the angular frequency.

Note: The classical plane wave is not normalizable, as the integral of the probability density is infinite. In this case, we can use Ξ¨(x,t)=Aeikxβˆ’iΟ‰tβˆ’iax2\Psi(x, t) = A e^{ikx - i\omega t -iax^2} where aa is a relatively small positive constant. The new wave function is normalizable and have similar behaviour to the plane wave near the origin.

0.5 SchrΓΆdinger Equation

0.5.1 Reduced Planck Constant

The reduced Planck constant is given by

ℏ=h2Ο€β‰ˆ1.0545718Γ—10βˆ’34Β JΒ s.\hbar = \frac{h}{2\pi} \approx 1.0545718 \times 10^{-34} \text{ J s}.

where hh is the Planck constant.

0.5.2 Quantization Rule

The quantization rule is given by

p^=βˆ’iβ„βˆ‡E^=iβ„βˆ‚βˆ‚t\begin{align} \hat{p} &= -i \hbar \nabla \\ \hat{E} &= i \hbar \frac{\partial}{\partial t} \end{align}

0.5.3 SchrΓΆdinger Equation for Free Particle

In classical mechanics, the energy of a free particle is given by

E=T+V=p22m+V(x).E = T + V = \frac{p^2}{2m} + V(x).

By applying the quantization rule, the Schrâdinger equation (SE) for a free particle with wave equation ψ\psi is given by

E^ψ=[p^22m+V]ψiβ„βˆ‚Οˆβˆ‚t=[βˆ’β„22mβˆ‡2+V]ψ=[βˆ’β„22mΞ”+V]ψ\begin{align} \hat{E}\psi &= \left[\frac{\hat{p}^2}{2m} + V\right]\psi \\ i \hbar \frac{\partial \psi}{\partial t} &= \left[-\frac{\hbar^2}{2m} \nabla^2 + V\right]\psi = \left[-\frac{\hbar^2}{2m} \Delta + V\right]\psi \end{align}

0.5.4 Hamiltonian Operator

The Hamiltonian operator H^\hat{H} is given by

H^=p^22m+V(x)\hat{H} = \frac{\hat{p}^2}{2m} + V(x)

Using the Hamiltonian operator, the SchrΓΆdinger equation for a free particle is given by

E^βˆ‚Οˆβˆ‚t=H^ψ.\hat{E} \frac{\partial \psi}{\partial t} = \hat{H}\psi.

0.5.5 Using Separation of Variables to Solve SchrΓΆdinger Equation

The SchrΓΆdinger equation can be solved using separation of variables. Let ψ(x,t)=Ο•(x)Ο„(t)\psi(x, t) = \phi(x) \tau(t). Then the SchrΓΆdinger equation becomes

E^ψ=H^ΟˆΟ•E^Ο„=Ο„H^Ο•E^ττ=H^ϕϕ=Eiβ„βˆ‚βˆ‚tΟ„=Eττ=eβˆ’iEt/ℏH^Ο•=EΟ•\begin{align} \hat{E}\psi &= \hat{H}\psi \\ \phi \hat{E} \tau &= \tau \hat{H} \phi \\ \frac{\hat{E} \tau}{\tau} &= \frac{\hat{H} \phi}{\phi} = E \\ i\hbar \frac{\partial}{\partial t} \tau &= E \tau \\ \tau &= e^{-iEt/\hbar} \\ \hat{H} \phi &= E \phi \end{align}

Assume, Ο•1,Ο•2,…\phi_1,\phi_2,\ldots solve H^Ο•=EΟ•\hat{H} \phi = E \phi with E1,E2,…E_1,E_2,\ldots. Then the general solution is given by

Ο•(x)=βˆ‘n=1∞cnΟ•n(x)eβˆ’iEnt/ℏ.\phi(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)e^{-iE_nt/\hbar}.

0.5.6 Time-Independent SchrΓΆdinger Equation

By the previous discussion, the task of solving the SchrΓΆdinger equation is reduced to solving the equation

H^Ο•n=EnΟ•n.\hat{H} \phi_n = E_n \phi_n.

This equation is called the time-independent SchrΓΆdinger equation (TISE).

We always call EnE_n eigenvalues of HH. And it is also known as:

  1. Energy lLevels
  2. Eigenenergies
  3. Energy Eigenvalues

And Ο•n\phi_n are called energy eigenstates of HH. And it is also known as:

  1. Stationary States
  2. Energy Eigenfunctions

0.5.6.1 Degeneracy of TISE Solutions

If two or more energy eigenstates have the same energy eigenvalue, then the energy eigenvalue is said to be degenerate.

If two eigenstates have the same eigenvalue, we call it degeneracy of order 2 or twice degenerate.

0.6 Double Slit Experiment

Consider the following double slit experiment setup.

Double Slit Experiment

We can assume the wave function that go through the slits AA and BB are the same, and is given by the analogue of plane wave ψ(r,t)=eikxβˆ’iwtr\psi(r, t) = \frac{e^{ikx-iwt}}{r}.

Then, for any point PP on the screen, the wave function is the superposition of the wave functions from the slits AA and BB.

Ξ¨(x,t)=ψA(r1,t)+ψB(r2,t)=eikr1βˆ’iwt+eikr2βˆ’iwt=eβˆ’iwt[eikr1r1+eikr2r2]\begin{align} \Psi(x, t) &= \psi_A(r_1, t) + \psi_B(r_2, t) \\ &= e^{ikr_1-iwt} + e^{ikr_2-iwt} \\ &= e^{-iwt}\left[\frac{e^{ikr_1}}{r_1} + \frac{e^{ikr_2}}{r_2}\right] \end{align}

where r1r_1 and r2r_2 are the distances from the slits AA and BB to the point PP. And is given by

r1=L2+(xβˆ’d)2r2=L2+(x+d)2\begin{align} r_1 &= \sqrt{L^2 + (x-d)^2} \\ r_2 &= \sqrt{L^2 + (x+d)^2} \end{align}

Without normalization, the probability density of the wave function is proportional to

∣Ψ(x,t)∣2=∣eikr1r1+eikr2r2∣2=1r12+1r22+1r1r2[eik(r1βˆ’r2)+eβˆ’ik(r1βˆ’r2)]β‰ˆ1L2[2+2cos⁑(k(r1βˆ’r2))]=1L2[2+2cos⁑(k(L2+(x+d)2βˆ’L2+(xβˆ’d)2))]=1L2[2+2cos⁑(k4dxL2+(x+d)2+L2+(xβˆ’d)2)]β‰ˆ1L2[2+2cos⁑(k4dx2L)]AsΒ L≫x,d=1L2[2+2cos⁑(k2dxL)]\begin{align} |\Psi(x, t)|^2 &= \left|\frac{e^{ikr_1}}{r_1} + \frac{e^{ikr_2}}{r_2}\right|^2 \\ &= \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_1r_2}\left[e^{ik(r_1-r_2)} + e^{-ik(r_1-r_2)}\right] \\ &\approx \frac{1}{L^2}\left[2 + 2\cos(k(r_1-r_2))\right] \\ &= \frac{1}{L^2}\left[2 + 2\cos\left( k \left( \sqrt{L^2 + (x+d)^2} - \sqrt{L^2 + (x-d)^2} \right) \right) \right] \\ &= \frac{1}{L^2}\left[2 + 2\cos\left( k \frac{ 4dx }{ \sqrt{L^2 + (x+d)^2} + \sqrt{L^2 + (x-d)^2} } \right) \right] \\ &\approx \frac{1}{L^2}\left[2 + 2\cos\left( k \frac{ 4dx }{ 2L } \right)\right] \quad\text{As } L \gg x,d \\ &= \frac{1}{L^2}\left[2 + 2\cos\left( k \frac{ 2dx }{ L } \right)\right] \end{align}

We can see that the probability density of the wave function is proportional to a transformed cosine function, which explains the interference pattern on the screen.

0.7 Parity of TISE Solutions

0.7.1 Even potential and Parity

Given a potential V(x):R→CV(x): \mathbb{R}\rightarrow \mathbb{C}, the potential is said to be even if

V(x)=V(βˆ’x)V(x) = V(-x)

In such cases, we can assume the TISE solution has definite parity, that is:

Ο•(x)=Β±Ο•(βˆ’x)\phi(x) = \pm \phi(-x)

0.7.2 Real Potential and Parity

Given a real potential V(x)V(x), we can assume the TISE solution to have definite parity regarding conjugation, that is:

Ο•(x)=Ο•βˆ—(x)\phi(x) = \phi^*(x)

0.8 States of TISE Solutions

In general there are three kinds of states of TISE solutions:

  1. Bound States
  2. Scattering States
  3. Non-physical States

0.8.1 Bound States

Bound states are states where the energy eigenvalue EnE_n is less than the potential energy at infinity and greater than the minimum potential energy. In such cases, the TISE solution is normalizable, and the energy eigenvalue is quantized.

Bound States

0.8.2 Scattering States

Scattering states are states where the energy eigenvalue EnE_n is greater than the potential energy at infinity. In such cases, the TISE solution is not normalizable, and the energy eigenvalue is continuous.

Scattering states can be approximated by normalizable states by similar method as the classical plane wave.

Scattering States

0.8.3 Non-physical States

Non-physical states are states where the energy eigenvalue EnE_n is less than the minimum potential energy. This case cannot happen in real physical systems.

Non-physical States

0.9 Continuity Equation and Probability Current

Consider the potential to be real. Define the probability density of a wave function P=Ψ(x,t)P = \Psi(x, t) as ∣Ψ(x,t)∣2|\Psi(x, t)|^2. Then:

βˆ‚βˆ‚tP=βˆ‚Οˆβˆ‚tΟˆβˆ—+Οˆβˆ‚Οˆβˆ‚tβˆ—=1iℏ[H^ΟˆΟˆβˆ—βˆ’Οˆ(H^ψ)βˆ—]=βˆ’β„2iℏ2m[βˆ‚2Οˆβˆ‚x2Οˆβˆ—βˆ’Οˆβˆ‚2Οˆβˆ‚x2βˆ—]=βˆ’ddx[ℏ2iℏ2m[βˆ‚Οˆβˆ‚xΟˆβˆ—βˆ’βˆ‚Οˆβˆ‚xβˆ‚Οˆβˆ‚xβˆ—βˆ’Οˆβˆ‚Οˆβˆ‚xβˆ—+βˆ‚Οˆβˆ‚xβˆ‚Οˆβˆ‚xβˆ—]]=βˆ’ddx[ℏ2mi[βˆ’Οˆβˆ‚Οˆβˆ‚xβˆ—+Οˆβˆ—βˆ‚Οˆβˆ‚x]]\begin{align} \frac{\partial}{\partial t} P &= \frac{\partial \psi}{\partial t} \psi^* + \psi \frac{\partial \psi}{\partial t}^* \\ &= \frac{1}{i\hbar}\left[ \hat{H}\psi\psi^* - \psi(\hat{H}\psi)^* \right] \\ &= -\frac{\hbar^2}{i\hbar 2m}\left[ \frac{\partial^2 \psi}{\partial x^2}\psi^* - \psi\frac{\partial^2 \psi}{\partial x^2}^* \right] \\ &= -\frac{d}{dx}\left[\frac{\hbar^2}{i\hbar 2m}\left[ \frac{\partial \psi}{\partial x}\psi^* - \frac{\partial \psi}{\partial x}\frac{\partial \psi}{\partial x}^* - \psi\frac{\partial \psi}{\partial x}^* + \frac{\partial \psi}{\partial x}\frac{\partial \psi}{\partial x}^* \right]\right] \\ &= -\frac{d}{dx}\left[\frac{\hbar}{2mi}\left[ -\psi\frac{\partial \psi}{\partial x}^* + \psi^*\frac{\partial \psi}{\partial x} \right]\right] \end{align}

We thus define the probability current JJ as

J=ℏ2mi[βˆ’Οˆβˆ‚Οˆβˆ‚xβˆ—+Οˆβˆ—βˆ‚Οˆβˆ‚x]J = \frac{\hbar}{2mi}\left[ -\psi\frac{\partial \psi}{\partial x}^* + \psi^*\frac{\partial \psi}{\partial x} \right]

The above equation become:

βˆ‚Pβˆ‚t=βˆ’dJdx\frac{\partial P}{\partial t} = -\frac{dJ}{dx}

and is called the continuity equation.

0.10 Quantum Tunnelling

We consider a potential barrier of height V0V_0 and width 2a2a.

That is, the potential is given by

V(x)={V0if ∣x∣<2a0otherwiseV(x) = \begin{cases} V_0 & \text{if } |x| < 2a \\ 0 & \text{otherwise} \end{cases}

Then, the TISE can be divided into three regions:

  1. Region I: x<βˆ’ax < -a
d2ψdx2=βˆ’2mℏ2Eψ\frac{d^2 \psi}{dx^2} = -\frac{2m}{\hbar^2}E\psi
  1. Region II: βˆ’a<x<a-a < x < a
d2ψdx2=βˆ’2mℏ2(Eβˆ’V0)ψ\frac{d^2 \psi}{dx^2} = -\frac{2m}{\hbar^2}(E-V_0)\psi
  1. Region III: x>ax > a
d2ψdx2=βˆ’2mℏ2Eψ\frac{d^2 \psi}{dx^2} = -\frac{2m}{\hbar^2}E\psi

0.10.1 Simplified Model of Quantum Tunnelling

For the sake of simplicity, let k=2mEℏ2k = \sqrt{\frac{2mE}{\hbar^2}} we can assume the solution of the TISE in Region I and Region III to be

In region I:

ψ(x)=Aeikx+Beβˆ’ikx\psi(x) = A e^{ikx} + B e^{-ikx}

In region III:

ψ(x)=Feikx\psi(x) = F e^{ikx}

Quantum Tunnelling

The wave AeikxA e^{ikx} can be interpreted as the wave go toward the barrier, and the wave Beβˆ’ikxB e^{-ikx} can be interpreted as the wave being reflected by the barrier and wave FeikxF e^{ikx} can be interpreted as the wave go through the barrier.

As there is no probability for the particle to be in region II, the probability current must be same at the point x=ax = a and x=βˆ’ax = -a.

In region I:

J=ℏ2mi[Οˆβˆ’βˆ‚Οˆβˆ‚xβˆ—+Οˆβˆ—βˆ‚Οˆβˆ‚x]=ℏkm(∣A∣2βˆ’βˆ£B∣2)J = \frac{\hbar}{2mi}\left[ \psi\frac{-\partial \psi}{\partial x}^* + \psi^*\frac{\partial \psi}{\partial x} \right] = \frac{\hbar k}{m}(|A|^2 - |B|^2)

In region III:

J=ℏ2mi[Οˆβˆ’βˆ‚Οˆβˆ‚xβˆ—+Οˆβˆ—βˆ‚Οˆβˆ‚x]=ℏkm∣F∣2J = \frac{\hbar}{2mi}\left[ \psi\frac{-\partial \psi}{\partial x}^* + \psi^*\frac{\partial \psi}{\partial x} \right] = \frac{\hbar k}{m}|F|^2

Thus, we have

∣A∣2βˆ’βˆ£B∣2=∣F∣2|A|^2 - |B|^2 = |F|^2

We define the reflection probability RR and transmission probability TT as

R=∣B∣2∣A∣2T=∣F∣2∣A∣2\begin{align} R &= \frac{|B|^2}{|A|^2} \\ T &= \frac{|F|^2}{|A|^2} \end{align}

Then, we have

R+T=1R + T = 1

0.10.2 Quantum Tunnelling through High and Thin Barrier

We consider a barrier that is infinitely high and thin at origin.

To state this formally, we consider the potential to be the limiting behaviour of the Dirac delta function potential.

Ξ΄L(x)={1LifΒ βˆ’L2<x<L20otherwise\delta_L(x) = \begin{cases} \frac{1}{L} & \text{if } -\frac{L}{2} < x < \frac{L}{2} \\ 0 & \text{otherwise} \end{cases}

and

Ξ΄=lim⁑Lβ†’0Ξ΄L(x)\delta = \lim_{L \to 0} \delta_L(x)

Also, for all function g(x)g(x), we have

lim⁑ϡ→0βˆ«βˆ’Ο΅Ο΅g(x)Ξ΄(x)dx=g(0)\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} g(x) \delta(x) dx = g(0)

Then, the potential is given by

V(x)=Ξ±Ξ΄(x)V(x) = \alpha \delta(x)

We again, consider the simplified model in the previous section.

In region I:

ψ(x)=Aeikx+Beβˆ’ikx\psi(x) = A e^{ikx} + B e^{-ikx}

In region III:

ψ(x)=Feikx\psi(x) = F e^{ikx}

As the region II is infinity thin, the right hand side of the region I and the left hand side of the region III must be the same.

Thus, we have

A+B=FA + B = F

Also, by integrating the TISE over the region [βˆ’Ο΅,Ο΅][-\epsilon,\epsilon], we get:

βˆ«βˆ’Ο΅Ο΅d2ψdx2dx=βˆ’2mℏ2βˆ«βˆ’Ο΅Ο΅(Eβˆ’Ξ±Ξ΄(x))ψdx[dψdx]βˆ’Ο΅Ο΅=βˆ’2mℏ2[Eψ(Ο΅)βˆ’Eψ(βˆ’Ο΅)βˆ’Ξ±βˆ«βˆ’Ο΅Ο΅ΟˆΞ΄dx]\begin{align} \int_{-\epsilon}^{\epsilon} \frac{d^2 \psi}{dx^2} dx &= -\frac{2m}{\hbar^2} \int_{-\epsilon}^{\epsilon} (E-\alpha\delta(x))\psi dx \\ \left[\frac{d \psi}{dx}\right]_{-\epsilon}^{\epsilon} &= -\frac{2m}{\hbar^2} \left[E\psi(\epsilon)-E\psi(-\epsilon) - \alpha\int_{-\epsilon}^{\epsilon} \psi\delta dx\right] \\ \end{align}

Taking the limit Ο΅β†’0\epsilon \to 0, we get

[dψdx]0+βˆ’[dψdx]0βˆ’=2mℏ2αψ(0)\begin{align} \left[\frac{d \psi}{dx}\right]_{0^+} - \left[\frac{d \psi}{dx}\right]_{0^-} &= \frac{2m}{\hbar^2} \alpha \psi(0) \end{align}

Substituting the solution of the TISE in region I and region III, we get

ik(Aβˆ’B)βˆ’ikF=2mℏ2Ξ±Fik(A-B) - ikF = \frac{2m}{\hbar^2} \alpha F

Solving the above equation, we can get the reflection and transmission probability.

0.11 Functional Analysis of Quantum Mechanics

0.11.1 Hilbert Space

Define the Hilbert space H\mathbf{H} as the space of all possible wave functions Ξ¨(x,t)\Psi(x, t) that are square integrable.

H={Ξ¨(x,t)βˆ£βˆ«βˆ’βˆžβˆžβˆ£Ξ¨(x,t)∣2dx<∞}\mathbf{H} = \left\{ \Psi(x, t) \mid \int_{-\infty}^{\infty} |\Psi(x, t)|^2 dx < \infty \right\}

The Hilbert space is a complex vector space.

0.11.2 Inner Product

We define the inner product of two wave functions Ξ¨1(x,t)\Psi_1(x, t) and Ξ¨2(x,t)\Psi_2(x, t) as

<Ξ¨1,Ξ¨2>=βˆ«βˆ’βˆžβˆžΞ¨1βˆ—(x,t)Ξ¨2(x,t)dx\left<\Psi_1, \Psi_2\right> = \int_{-\infty}^{\infty} \Psi_1^*(x, t) \Psi_2(x, t) dx

0.11.2.1 Properties of Inner Product

  1. Linearity in Second Argument: For all Ψ1,Ψ2∈H\Psi_1, \Psi_2 \in \mathbf{H} and a,b∈Ca,b \in \mathbb{C}, we have <aΨ1+bΨ2,Ψ3>=a<Ψ1,Ψ3>+b<Ψ2,Ψ3>\left<a\Psi_1 + b\Psi_2, \Psi_3\right> = a\left<\Psi_1, \Psi_3\right> + b\left<\Psi_2, \Psi_3\right>.
  2. Anti-linearity in First Argument: For all Ξ¨1,Ξ¨2∈H\Psi_1, \Psi_2 \in \mathbf{H} and a,b∈Ca,b \in \mathbb{C}, we have <Ξ¨1,aΞ¨2+bΞ¨3>=aβˆ—<Ξ¨1,Ξ¨2>+bβˆ—<Ξ¨1,Ξ¨3>\left<\Psi_1, a\Psi_2 + b\Psi_3\right> = a^*\left<\Psi_1, \Psi_2\right> + b^*\left<\Psi_1, \Psi_3\right>.
  3. Positive Definite: For all Ψ∈H\Psi \in \mathbf{H}, we have <Ξ¨,Ξ¨>β‰₯0\left<\Psi, \Psi\right> \geq 0 and <Ξ¨,Ξ¨>=0\left<\Psi, \Psi\right> = 0 if and only if Ξ¨=0\Psi = 0.
  4. Conjugate Symmetric (Skew Symmetric): For all Ξ¨1,Ξ¨2∈H\Psi_1, \Psi_2 \in \mathbf{H}, we have <Ξ¨1,Ξ¨2>=<Ξ¨2,Ξ¨1>βˆ—\left<\Psi_1, \Psi_2\right> = \left<\Psi_2, \Psi_1\right>^*.

0.11.3 Norm

The norm of a wave function Ξ¨(x,t)\Psi(x, t) is defined as

∣∣Ψ∣∣=<Ψ,Ψ>||\Psi|| = \sqrt{\left<\Psi, \Psi\right>}

0.11.4 Orthogonality

Two wave functions Ξ¨1(x,t)\Psi_1(x, t) and Ξ¨2(x,t)\Psi_2(x, t) are said to be orthogonal if

<Ξ¨1,Ξ¨2>=0\left<\Psi_1, \Psi_2\right> = 0

0.11.5 Angle

The angle between two wave functions Ξ¨1(x,t)\Psi_1(x, t) and Ξ¨2(x,t)\Psi_2(x, t) is defined as

cos⁑θ=<Ψ1,Ψ2>∣∣Ψ1∣∣∣∣Ψ2∣∣\cos\theta = \frac{\left<\Psi_1, \Psi_2\right>}{||\Psi_1|| ||\Psi_2||}

0.11.6 Orthonormal Basis

A set of wave functions {Ξ¨1(x,t),Ξ¨2(x,t),…}\{\Psi_1(x, t), \Psi_2(x, t), \ldots\} is said to be an orthonormal basis if

  1. The set is orthogonal.
  2. The set is normalized.
  3. The set spans the Hilbert space. That is, for all Ξ¨(x,t)∈H\Psi(x, t) \in \mathbf{H}, there exists a set of complex numbers {c1,c2,…}\{c_1, c_2, \ldots\} such that
Ξ¨(x,t)=βˆ‘n=1∞cnΞ¨n(x,t)\Psi(x, t) = \sum_{n=1}^{\infty} c_n \Psi_n(x, t)

0.11.7 Operator

An operator is a function that maps a wave function to another wave function.

0.11.8 Hermitian Conjugate

The Hermitian conjugate of an operator A^\hat{A} is denoted by A^†\hat{A}^\dagger and is the unique operator that satisfies

<A^Ξ¨1,Ξ¨2>=<Ξ¨1,A^†Ψ2>\left<\hat{A}\Psi_1, \Psi_2\right> = \left<\Psi_1, \hat{A}^\dagger\Psi_2\right>

0.11.9 Hermitian Operator

An Hermitian operator is an operator that satisfies

<A^Ξ¨1,Ξ¨2>=<Ξ¨1,A^Ξ¨2>\left<\hat{A}\Psi_1, \Psi_2\right> = \left<\Psi_1, \hat{A}\Psi_2\right>

for all Ψ1,Ψ2∈H\Psi_1, \Psi_2 \in \mathbf{H}.

An equivalent definition is that the operator is equal to its Hermitian conjugate.

0.11.10 Spectral Theorem

The spectral theorem states that for all Hermitian operators A^\hat{A}, there exists an orthonormal basis {Ξ¨1(x,t),Ξ¨2(x,t),…}\{\Psi_1(x, t), \Psi_2(x, t), \ldots\} such that

A^Ψn(x,t)=anΨn(x,t)\hat{A}\Psi_n(x, t) = a_n\Psi_n(x, t)

where ana_n are the eigenvalues of A^\hat{A} and is real.

0.11.10.1 Hamiltonian Operator is Hermitian

The Hamiltonian operator H^\hat{H} is Hermitian.

Proof:

<H^Ξ¨1,Ξ¨2>=βˆ«βˆ’βˆžβˆžΞ¨1βˆ—(x,t)H^Ξ¨2(x,t)dx=βˆ«βˆ’βˆžβˆžΞ¨1βˆ—(x,t)[βˆ’β„22mβˆ‚2Ξ¨2βˆ‚x2+V(x)Ξ¨2(x,t)]dxByΒ IntegrationΒ ByΒ Part=βˆ«βˆ’βˆžβˆž[βˆ’β„22mβˆ‚2Ξ¨1βˆ—βˆ‚x2+V(x)Ξ¨1βˆ—(x,t)]Ξ¨2(x,t)dx=<Ξ¨1,H^Ξ¨2>\begin{align} \left<\hat{H}\Psi_1, \Psi_2\right> &= \int_{-\infty}^{\infty} \Psi_1^*(x, t) \hat{H}\Psi_2(x, t) dx \\ &= \int_{-\infty}^{\infty} \Psi_1^*(x, t) \left[-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi_2}{\partial x^2} + V(x)\Psi_2(x, t)\right] dx \quad \text{By Integration By Part} \\ &= \int_{-\infty}^{\infty} \left[-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi_1^*}{\partial x^2} + V(x)\Psi_1^*(x, t)\right] \Psi_2(x, t) dx \\ &= \left<\Psi_1, \hat{H}\Psi_2\right> \end{align}

0.11.11 Positivity Operators

An operator A^\hat{A} is said to be positive definite if give any non-zero wave function Ξ¨(x,t)\Psi(x, t), we have

<A^Ξ¨,Ξ¨>>0\left<\hat{A}\Psi, \Psi\right> > 0

An operator A^\hat{A} is said to be positive semi-definite if give any wave function Ξ¨(x,t)\Psi(x, t), we have

<A^Ξ¨,Ξ¨>β‰₯0\left<\hat{A}\Psi, \Psi\right> \geq 0

Any operator given by A^=B^†B^\hat{A} = \hat{B}^\dagger \hat{B} is positive semi-definite.

0.12 Measurement Postulate

Given a orthonormal basis {Ξ¨1(x,t),Ξ¨2(x,t),…}\{\Psi_1(x, t), \Psi_2(x, t), \ldots\}, the measurement postulate states that the probability of measuring the normalized wave function Ξ¨(x,t)\Psi(x, t) to be in the state Ξ¨n(x,t)\Psi_n(x, t) is given by

Pn=∣<Ψn,Ψ>∣2P_n = \left|\left<\Psi_n, \Psi\right>\right|^2

0.12.1 Post Measurement State

After the measurement, the state of the wave function will collapse to the state that is measured.

0.13 Measurement of Observables

Given an observable A^\hat{A}, it is postulated that A^\hat{A} is Hermitian and has an orthonormal basis {Ξ¨1(x,t),Ξ¨2(x,t),…}\{\Psi_1(x, t), \Psi_2(x, t), \ldots\}.

The expectation value of the observable A^\hat{A} of a wave function ψ\psi is given by

<A^>=βˆ‘n=1∞anPn=<ψ∣A^ψ>\left<\hat{A}\right> = \sum_{n=1}^{\infty} a_n P_n = \left<\psi|\hat{A}\psi\right>

0.14 Commutators and Lie Bracket

In general, two operators A^\hat{A} and B^\hat{B} do not commute.

We define the commutator (Lie Bracket) of two operators A^\hat{A} and B^\hat{B} as

[A^,B^]=A^B^βˆ’B^A^[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}

0.14.1 Properties of Commutators

  1. Linearity: [aA^+bB^,C^]=a[A^,C^]+b[B^,C^][a\hat{A} + b\hat{B}, \hat{C}] = a[\hat{A}, \hat{C}] + b[\hat{B}, \hat{C}]
  2. Anti-linearity: [A^,aB^+bC^]=a[A^,B^]+b[A^,C^][\hat{A}, a\hat{B} + b\hat{C}] = a[\hat{A}, \hat{B}] + b[\hat{A}, \hat{C}]
  3. Linearity in Second Argument: [C^,aA^+bB^]=a[C^,A^]+b[C^,B^][\hat{C}, a\hat{A} + b\hat{B}] = a[\hat{C},\hat{A}] + b[\hat{C},\hat{B}]
  4. Distributivity: [A^,B^C^]=[A^,B^]C^+B^[A^,C^][\hat{A}, \hat{B}\hat{C}] = [\hat{A}, \hat{B}]\hat{C} + \hat{B}[\hat{A}, \hat{C}]

0.14.1.1 Commutator of Position and Momentum Operators

The commutator of position operator x^\hat{x} and momentum operator p^\hat{p} is given by

[x^,p^]=x^p^βˆ’p^x^=x(βˆ’iβ„βˆ‚βˆ‚x)βˆ’(βˆ’iβ„βˆ‚βˆ‚x)x=x(βˆ’iβ„βˆ‚βˆ‚x)βˆ’(βˆ’iℏ)βˆ’x(βˆ’iβ„βˆ‚βˆ‚x)=iℏ\begin{align} [\hat{x},\hat{p}] &= \hat{x}\hat{p} - \hat{p}\hat{x} \\ &= x\left(-i\hbar\frac{\partial}{\partial x}\right) - \left(-i\hbar\frac{\partial}{\partial x}\right)x \\ &= x\left(-i\hbar\frac{\partial}{\partial x}\right) - \left(-i\hbar\right) - x\left(-i\hbar\frac{\partial}{\partial x}\right) \\ &= i\hbar \end{align}

0.15 Compatibility of Observables

Two observables A^\hat{A} and B^\hat{B} are said to be compatible if they commute.

0.16 Robertson Inequality

The Robertson Inequality states that for any two observables A^\hat{A} and B^\hat{B}, we have

Ξ”A^Ξ”B^β‰₯12∣<[A^,B^]>∣\Delta \hat{A} \Delta \hat{B} \ge \frac{1}{2} \left|\left<[\hat{A}, \hat{B}]\right>\right|

Proof:

Without loss of generality, we can assume <A^>=0\left<\hat{A}\right> = 0 and <B^>=0\left<\hat{B}\right> = 0. Otherwise we replace A^\hat{A} with A^βˆ’<A^>\hat{A} - \left<\hat{A}\right> and B^\hat{B} with B^βˆ’<B^>\hat{B} - \left<\hat{B}\right>.

Then, we have

Ξ”A^Ξ”B^=<A^2><B^2>=<A^ψ∣A^ψ><B^ψ∣B^ψ>β‰₯∣<A^ψ∣B^ψ>∣Cauchy-Schwartz=∣<ψ∣A^B^ψ>∣\begin{align} \Delta \hat{A} \Delta \hat{B} &= \sqrt{\left<\hat{A}^2\right>\left<\hat{B}^2\right>} \\ &= \sqrt{\left<\hat{A}\psi|\hat{A}\psi\right>\left<\hat{B}\psi|\hat{B}\psi\right>} \\ &\ge \left|\left<\hat{A}\psi|\hat{B}\psi\right>\right| \quad \text{Cauchy-Schwartz}\\ &= \left|\left<\psi|\hat{A}\hat{B}\psi\right>\right| \\ \end{align}

By similar argument, we have

Ξ”A^Ξ”B^β‰₯∣<ψ∣B^A^ψ>∣\Delta \hat{A} \Delta \hat{B} \ge \left|\left<\psi|\hat{B}\hat{A}\psi\right>\right|

Thus,

Ξ”A^Ξ”B^=12(Ξ”A^Ξ”B^+Ξ”A^Ξ”B^)β‰₯12(∣<ψ∣A^B^ψ>∣+∣<ψ∣B^A^ψ>∣)β‰₯12∣<ψ∣A^B^ψ>βˆ’<ψ∣B^A^ψ>∣=12∣<ψ∣[A^,B^]ψ>∣\begin{align} \Delta \hat{A} \Delta \hat{B} &= \frac{1}{2}\left(\Delta \hat{A} \Delta \hat{B} + \Delta \hat{A} \Delta \hat{B}\right) \\ &\ge \frac{1}{2}\left( \left|\left<\psi|\hat{A}\hat{B}\psi\right>\right| + \left|\left<\psi|\hat{B}\hat{A}\psi\right>\right| \right)\\ &\ge \frac{1}{2}\left| \left<\psi|\hat{A}\hat{B}\psi\right> - \left<\psi|\hat{B}\hat{A}\psi\right> \right| \\ &= \frac{1}{2}\left| \left<\psi|[\hat{A}, \hat{B}]\psi\right> \right| \\ \end{align}

0.16.1 Robertson Inequality for Position and Momentum Operators

Given the position operator x^\hat{x} and momentum operator p^\hat{p}, we have

Ξ”x^Ξ”p^β‰₯ℏ2\Delta \hat{x} \Delta \hat{p} \ge \frac{\hbar}{2}

0.17 Quantum Harmonic Oscillator

A quantum harmonic oscillator is a system where the potential energy is given by

V(x)=12mω2x2V(x) = \frac{1}{2}m\omega^2x^2

0.17.1 Annihilation and Creation Operators

Given the Hamiltonian operator H^\hat{H} of the quantum harmonic oscillator, we can define the annihilation operator a^\hat{a} and creation operator a^†\hat{a}^\dagger as

a^=ux^+vp^ia^†=ux^βˆ’vp^i\begin{align} \hat{a} &= u\hat{x} + v\hat{p} i \\ \hat{a}^\dagger &= u\hat{x} - v\hat{p} i \end{align}

Thus, we have

a^a^†=u2x^2βˆ’v2p^2βˆ’uvx^p^i+uvp^x^i=u2x^2βˆ’v2p^2+uvℏ\begin{align} \hat{a}\hat{a}^\dagger &= u^2 \hat{x}^2 - v^2 \hat{p}^2 - uv \hat{x}\hat{p} i + uv \hat{p}\hat{x} i \\ &= u^2 \hat{x}^2 - v^2 \hat{p}^2 + uv\hbar \\ \end{align}

If we take:

u2=12ℏmΟ‰v2=12mωℏ\begin{align} u^2 &= \frac{1}{2\hbar}m\omega \\ v^2 &= \frac{1}{2 m\omega\hbar} \\ \end{align}

Then, we have

a^a^†=12ℏmΟ‰x^2+12mωℏp^2+12=1ℏωH^+12\begin{align} \hat{a}\hat{a}^\dagger &= \frac{1}{2\hbar}m\omega \hat{x}^2 + \frac{1}{2 m\omega\hbar} \hat{p}^2 + \frac{1}{2} \\ &= \frac{1}{\hbar\omega}\hat{H} + \frac{1}{2} \end{align}

0.17.2 Bosonic Commutation Relation

Given the annihilation operator a^\hat{a} and creation operator a^†\hat{a}^\dagger of the quantum harmonic oscillator, we have

[a^,a^†]=2uvh=1[\hat{a}, \hat{a}^\dagger] = 2uvh = 1

0.17.3 Number Operator

Given the annihilation operator a^\hat{a} and creation operator a^†\hat{a}^\dagger of the quantum harmonic oscillator, we can define the number operator N^\hat{N} as

N^=a^†a^\hat{N} = \hat{a}^\dagger\hat{a}

Thus, we have

H^=ℏω(N^+12)\begin{align} \hat{H} = \hbar\omega\left(\hat{N} + \frac{1}{2}\right) \end{align}

0.17.4 Eigenstates of Number Operator

As the number operator N^\hat{N} is Hermitian, we can find an orthonormal basis {Ξ¨0(x),Ξ¨1(x),…}\{\Psi_0(x), \Psi_1(x), \ldots\} such that

N^Ψn(x)=EnΨn(x)\hat{N}\Psi_n(x) = E_n\Psi_n(x)

We next prove that EnE_n can only be non-negative integers.

Given Ξ¨n\Psi_n an eigenvector of N^\hat{N} with eigenvalue EnE_n, we have

N^a^Ξ¨n=a^†a^2Ξ¨n=(a^a^β€ βˆ’1)a^Ξ¨n=a^N^βˆ’a^Ξ¨n=(Enβˆ’1)a^Ξ¨n\begin{align} \hat{N}\hat{a}\Psi_n &= \hat{a}^\dagger\hat{a}^2\Psi_n \\ &= (\hat{a}\hat{a}^\dagger - 1)\hat{a}\Psi_n \\ &= \hat{a}\hat{N} - \hat{a}\Psi_n \\ &= (E_n-1)\hat{a}\Psi_n \\ \end{align}

Thus, if a^Ξ¨n\hat{a}\Psi_n is non-zero, then a^Ξ¨n\hat{a}\Psi_n is also an eigenvector of N^\hat{N} with eigenvalue Enβˆ’1E_n-1.

We next prove that a^Ξ¨n=0\hat{a}\Psi_n = 0 if and only if En=0E_n = 0.

If En=0E_n = 0, then

<a^Ξ¨n∣a^Ξ¨n>=<Ξ¨n∣a^†a^Ξ¨n>=<Ξ¨n∣0>=0\begin{align} \left<\hat{a}\Psi_n|\hat{a}\Psi_n\right> &= \left<\Psi_n|\hat{a}^\dagger\hat{a}\Psi_n\right> \\ &= \left<\Psi_n|0\right> \\ &= 0 \end{align}

Thus, a^Ξ¨n=0\hat{a}\Psi_n = 0.

If a^Ξ¨n=0\hat{a}\Psi_n = 0, then

<a^Ξ¨n∣a^Ξ¨n>=<Ξ¨n∣a^†a^Ξ¨n>=<Ξ¨n∣N^Ξ¨n>=En<Ξ¨n∣Ψn>=0\begin{align} \left<\hat{a}\Psi_n|\hat{a}\Psi_n\right> &= \left<\Psi_n|\hat{a}^\dagger\hat{a}\Psi_n\right> \\ &= \left<\Psi_n|\hat{N}\Psi_n\right> \\ &= E_n\left<\Psi_n|\Psi_n\right> \\ &= 0 \end{align}

Thus, En=0E_n = 0.

By proceeding the previous argument, we conclude that a^kΞ¨n\hat{a}^k\Psi_n is an eigenvector of N^\hat{N} with eigenvalue Enβˆ’kE_n-k.

If EnEn is not an integer, then kk can be any positive integer as the annihilation process can be repeated indefinitely when Enβˆ’kE_n - k never hit zero. And there exits kk such that Enβˆ’k<0E_n - k < 0, which is not possible, as N^=a^†a^\hat{N} = \hat{a}^\dagger\hat{a}, and is positive semi-definite.

Thus, EnE_n is a non-negative integer.

0.17.5 Ground State of Quantum Harmonic Oscillator

By discussion in the previous section, we can find an normalised eigenstate Ξ¨0(x)\Psi_0(x) of the number operator N^\hat{N} with eigenvalue E0=0E_0 = 0.

In this section, we prove that it is unique, up to a complex constant.

By previous discussion, we see that a^Ξ¨0=0\hat{a}\Psi_0 = 0.

ux^Ξ¨0+vp^iΞ¨0=0ux^Ξ¨0+vℏddxΞ¨0=0\begin{align} u\hat{x}\Psi_0 + v\hat{p} i \Psi_0 &= 0 \\ u\hat{x}\Psi_0 + v\hbar \frac{d}{dx}\Psi_0 &= 0 \\ \end{align}

As the above equation is a first oder homogeneous ODE, and the solution is unique up to a complex constant.

0.17.6 Creation Operator and Eigenstates of Number Operator

Given the ground state Ξ¨0(x)\Psi_0(x) of the quantum harmonic oscillator, and eigenstate Ξ¨n(x)\Psi_n(x) of the number operator N^\hat{N} with eigenvalue En=nE_n = n. Then:

N^a^†Ψn=(En+1)a^†Ψn\hat{N}\hat{a}^\dagger\Psi_n = (E_n+1) \hat{a}^\dagger\Psi_n

and

<a^†Ψn∣a^†Ψn>=<Ξ¨n∣a^a^†Ψn>=<Ξ¨n∣[a^,a^†]+a^†a^Ξ¨n>=<Ξ¨n∣Ψn>+<Ξ¨n∣N^Ξ¨n>=En+1\begin{align} \left<\hat{a}^\dagger\Psi_n|\hat{a}^\dagger\Psi_n\right> &= \left<\Psi_n|\hat{a}\hat{a}^\dagger\Psi_n\right> \\ &= \left<\Psi_n|[\hat{a},\hat{a}^\dagger]+\hat{a}^\dagger\hat{a}\Psi_n\right> \\ &= \left<\Psi_n|\Psi_n\right> + \left<\Psi_n|\hat{N}\Psi_n\right> \\ &= E_n + 1 \end{align}

Thus, we could define the recursive relation:

Ξ¨n+1=a^†ΨnEn+1\Psi_{n+1} = \frac{\hat{a}^\dagger\Psi_n}{\sqrt{E_n+1}}

Repeating the formula, we can get all the eigenstates of the number operator N^\hat{N}. And could be defined by the ground state Ξ¨0(x)\Psi_0(x).

Ξ¨n(x)=(a^†)nΞ¨0(x)n!\Psi_n(x) = \frac{(\hat{a}^\dagger)^n\Psi_0(x)}{\sqrt{n!}}

0.17.7 Statistics of Quantum Harmonic Oscillator

As the creation operator a^†\hat{a}^\dagger and annihilation operator a^\hat{a} are linear combinations of position operator x^\hat{x} and momentum operator p^\hat{p}, we can derive the position operator x^\hat{x} and momentum operator p^\hat{p} in terms of a^\hat{a} and a^†\hat{a}^\dagger.

x^=12mℏω(a^+a^†)p^=i2mℏω(a^βˆ’a^†)\begin{align} \hat{x} &= \frac{1}{\sqrt{2m\hbar\omega}}(\hat{a} + \hat{a}^\dagger) \\ \hat{p} &= \frac{i}{\sqrt{2m\hbar\omega}}(\hat{a} - \hat{a}^\dagger) \end{align}

Thus, we have

<Ξ¨n∣x^Ξ¨n>=12mℏω<Ξ¨n∣(a^+a^†)Ξ¨n>=0\begin{align} \left<\Psi_n|\hat{x}\Psi_n\right> &= \frac{1}{\sqrt{2m\hbar\omega}}\left<\Psi_n|(\hat{a} + \hat{a}^\dagger)\Psi_n\right> = 0 \\ \end{align}

and

<Ξ¨n∣p^Ξ¨n>=i2mℏω<Ξ¨n∣(a^βˆ’a^†)Ξ¨n>=0\begin{align} \left<\Psi_n|\hat{p}\Psi_n\right> &= \frac{i}{\sqrt{2m\hbar\omega}}\left<\Psi_n|(\hat{a} - \hat{a}^\dagger)\Psi_n\right> = 0 \\ \end{align}

0.18 Constant of Motion and Commutators

Given an operator A^\hat{A}, which is probably time dependent, then

ddt<A>=ddt<Ψ∣A^Ξ¨>=ddtβˆ«βˆ’βˆžβˆžΞ¨βˆ—A^Ξ¨dx=βˆ«βˆ’βˆžβˆž(βˆ‚Ξ¨βˆ—βˆ‚tA^Ξ¨+Ξ¨βˆ—βˆ‚A^βˆ‚tΞ¨+Ξ¨βˆ—A^βˆ‚Ξ¨βˆ‚t)dx=<Ξ¨βˆ£βˆ‚A^βˆ‚tΞ¨>+βˆ«βˆ’βˆžβˆž(βˆ‚Ξ¨βˆ—βˆ‚tA^Ξ¨+Ξ¨βˆ—A^βˆ‚Ξ¨βˆ‚t)dx=<Ξ¨βˆ£βˆ‚A^βˆ‚tΞ¨>+<βˆ‚Ξ¨βˆ‚t∣A^Ξ¨>+<Ψ∣A^βˆ‚Ξ¨βˆ‚t>=<Ξ¨βˆ£βˆ‚A^βˆ‚tΞ¨>+<(1iℏH^Ξ¨)∣A^Ξ¨>+<Ψ∣A^(1iℏH^Ξ¨)>=<Ξ¨βˆ£βˆ‚A^βˆ‚tΞ¨>+1iℏ[βˆ’<Ψ∣H^A^Ξ¨>+<Ψ∣A^H^Ξ¨>]=<Ξ¨βˆ£βˆ‚A^βˆ‚tΞ¨>+1iℏ<[A^,H^]>\begin{align} \frac{d}{dt}\left<A\right> &= \frac{d}{dt}\left<\Psi|\hat{A}\Psi\right> \\ &= \frac{d}{dt} \int_{-\infty}^{\infty} \Psi^*\hat{A}\Psi dx \\ &= \int_{-\infty}^{\infty} \left(\frac{\partial \Psi^*}{\partial t}\hat{A}\Psi + \Psi^*\frac{\partial \hat{A}}{\partial t}\Psi + \Psi^*\hat{A}\frac{\partial \Psi}{\partial t}\right) dx \\ &= \left<\Psi|\frac{\partial \hat{A}}{\partial t}\Psi\right> +\int_{-\infty}^{\infty} \left(\frac{\partial \Psi^*}{\partial t}\hat{A}\Psi + \Psi^*\hat{A}\frac{\partial \Psi}{\partial t}\right) dx \\ &= \left<\Psi|\frac{\partial \hat{A}}{\partial t}\Psi\right> + \left<\frac{\partial \Psi}{\partial t}|\hat{A}\Psi\right> + \left<\Psi|\hat{A}\frac{\partial \Psi}{\partial t}\right> \\ &= \left<\Psi|\frac{\partial \hat{A}}{\partial t}\Psi\right> + \left<\left(\frac{1}{i\hbar}\hat{H}\Psi\right)|\hat{A}\Psi\right> + \left<\Psi|\hat{A}\left(\frac{1}{i\hbar}\hat{H}\Psi\right)\right> \\ &= \left<\Psi|\frac{\partial \hat{A}}{\partial t}\Psi\right> + \frac{1}{i\hbar}\left[ - \left<\Psi|\hat{H}\hat{A}\Psi\right> + \left<\Psi|\hat{A}\hat{H}\Psi\right> \right] \\ &= \left<\Psi|\frac{\partial \hat{A}}{\partial t}\Psi\right> + \frac{1}{i\hbar} \left<[\hat{A},\hat{H}]\right> \end{align}