
Question 0.1. Proof that
√
1 +

√
2 +

√
3 · · ·+

√
n for n > 2 is irrational.

However, if we consider the linear combination of
√
1,

√
2,

√
3 . . .

√
n over Q, then it is likely

that we will get a similar result as we kick out some special cases.

Question 0.2. Given n positive integers, a1 < a2 < · · · < an, such that
√

aj

ai
/∈ Q for all i < j

and √
ai /∈ Q for all i. Also given λ1, λ2 . . . λn ∈ Q. Prove that

∑n
i=1 λi

√
ai ∈ Q if and only if

λ1 = λ2 = · · · = λn = 0.
Proof. Suppose this stand for n = k, then it is suffice to prove n = k + 1.

Suppose there exist λ1, λ2 . . . λk+1 ∈ Q such that
k+1∑
i=1

λi
√
ai = q ∈ Q

If λj = 0, then −λj
√
aj+

∑k+1
i=1 λi

√
ai = q ∈ Q, and we are done according to the assumption.

If λj ̸= 0 for all j, then we have
k∑

i=1

λi
√
ai = q − λk+1

√
ak+1

Clearly, q − λk+1
√
ak+1 is a root of a irreducible quadratic polynomial g ∈ Q[x]. And the

polynomial must have another root which is q + λk+1ak+1.
Also, the polynomial

f =
∏

(x− (±λ1
√
a1 +±λ2

√
a2 + · · ·+±λn

√
an))

is also in Q[x] by induction.
Also,

f(q − λk+1
√
ak+1) = f(

k+1∑
i=1

λi
√
ai)

= 0

As g is irreducible over Q, g must divides f . Thus

f(q + λk+1
√
ak+1) = 0

Thus, there exits α1, α2 . . . αn which is either 1 or −1 such that
k∑

i=1

αiλi
√
ai = q + λk+1

√
ak+1

Thus {∑k
i=1 αiλi

√
ai = q + λk+1

√
ak+1∑k

i=1 λi
√
ai = q − λk+1

√
ak+1

k∑
i=1

αiλi
√
ai +

k∑
i=1

λi
√
ai = q + λk+1

√
ak+1 + q − λk+1

√
ak+1

k∑
i=1

(αi + 1)λi
√
ai = 2q ∈ Q
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By the induction assumption, we have (αi + 1)λi = 0 for all i ≤ k. As λi ̸= 0 for all i, we
have αi = −1 for all i ≤ k.

Thus,

k∑
i=1

(αi + 1)λi
√
ai = 0

which implies q = 0.
Thus,

k+1∑
i=1

λi
√
ai = 0

√
ak+1(

k+1∑
i=1

λi
√
ai) = 0

k∑
i=1

λi
√
ak+1ai = −λk+1ak+1 ∈ Q

The only thing left to proof is that ak+1ai, i ≤ k satisfy the assumption in the question, and
then the induction assumption will apply, which proves that λi = 0, i ≤ k.

Given any i < j, we have √
ajak+1

aiak+1
=

√
aj
ai

/∈ Q

√
ajak+1 = ak+1

√
aj

ak+1
/∈ Q

As, we does not use any special property of Q other then the fact that it is a field. So, the
proof should be valid for any field F that characteristic equals 0, if we rephrase the question in
term of F.

Question 0.3. Given n distinct element a1, a2, . . . , an ∈ F, let bi be a root of x2 − ai for all i.
And bib

−1
j /∈ F for all i ̸= j, and bi /∈ F for all i. Then given λ1, λ2 . . . λn ∈ F,

∑n
i=0 λibi ∈ F if

and only if λi = 0 for all i.

If we try to shift bk to bk + ck such that ck ∈ F, then the result clearly still stand. So, the
previous question can be generalised a bit.

Question 0.4. Given n distinct irreducible quadratic polynomial f1, f2 . . . fn in F[x].
And given any i ̸= j, fj does not have root in F[x]/fi.
And bi be all roots of fi for all i. Then given λ1, λ2 . . . λn ∈ F,

∑n
i=0 λibi ∈ F if and only if

λi = 0 for all i.

If we are not satisfied with the quadratic polynomials, we can try to generalise the question
to any polynomial. However, we may need to have a more strict condition on the roots.
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Question 0.5. Given n distinct irreducible polynomial f1, f2 . . . fn in F[x] with orders greater
or equal than 2.

Given any i ̸= j. fj does not have root in F[x]/fi.
And bi be all roots of fi for all i. Then given λ1, λ2 . . . λn ∈ F,

∑n
i=0 λibi,1 ∈ F if and only if

λi = 0 for all i.

To prove the above question, we need another definition and some relating lemma.

Definition 0.1. Given a polynomial f(x) ∈ F[x],

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

Define the derivative f ′(x) of f(x) as

f ′(x) = nxn−1 + (n− 1)a1x
n−2 + (n− 2)a2x

n−3 + · · ·+ 2an−2x+ an−1

Through some simple calculation, we can prove the following lemma.

Lemma 0.1. Given polynomials f(x), g(x) ∈ F[x],

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

Lemma 0.2. Given a irreducible polynomial f(x) ∈ F[x], and a field K, such that F ⊆ K and
f(x) can be factorized into product of linear factors in K.

Chose a root α of f(x) in K. Then (x− α)2 divides f(x) in K, if and only if f ′(x) = 0.

As f ′(x) is still a polynomial in F[x], and we can choose arbitrary K. This lemma implies
that irreducible polynomial f(x) have distinct roots if and only if f ′(x) ̸= 0.

Proof. If (x− α)2 divides f(x) in K.
Let,

f(x) = (x− α)2g(x)

Then,
f ′(x) = 2(x− α)g(x) + (x− α)2g′(x)

Then f ′(α) = 0. As f(x) is irreducible, and f(x) and f ′(x) have common root. So, f(x)
divides f ′(x).

As, the degree of f ′(x) is less than f(x), then f ′(x) = 0.
Conversely, if f ′(x) = 0.
Let,

f(x) = (x− α)g(x)

Then,
f ′(x) = g(x) + (x− α)g′(x)

Then,

0 = f ′(α)

= g(α) + (α− α)g′(α)

= g(α)

So, α is a root of g(x).
Thus, (x− α)2 divides f(x) in K.
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Lemma 0.3. Given distinct irreducible polynomials f(x), g(x) ∈ F[x], where the characteristic
of F equals 0.

Chose any field K, such that F ⊆ K, and f(x) and g(x) can be factorized into product of
linear factors in K.

Let a1, a2 . . . an be all roots of f(x) in K, and b1, b2 . . . bm be all roots of g(x) in K.
Then,

h(x) =

n∏
i=1

m∏
j=1

(x− (ai + bj))

have coefficients in F,
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