Question 0.1. Proof that $\sqrt{1}+\sqrt{2}+\sqrt{3} \cdots+\sqrt{n}$ for $n>2$ is irrational.
However, if we consider the linear combination of $\sqrt{1}, \sqrt{2}, \sqrt{3} \ldots \sqrt{n}$ over \mathbb{Q}, then it is likely that we will get a similar result as we kick out some special cases.
Question 0.2. Given n positive integers, $a_{1}<a_{2}<\cdots<a_{n}$, such that $\sqrt{\frac{a_{j}}{a_{i}}} \notin \mathbb{Q}$ for all $i<j$ and $\sqrt{a_{i}} \notin \mathbb{Q}$ for all i. Also given $\lambda_{1}, \lambda_{2} \ldots \lambda_{n} \in \mathbb{Q}$. Prove that $\sum_{i=1}^{n} \lambda_{i} \sqrt{a_{i}} \in \mathbb{Q}$ if and only if $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$.
Proof. Suppose this stand for $n=k$, then it is suffice to prove $n=k+1$.
Suppose there exist $\lambda_{1}, \lambda_{2} \ldots \lambda_{k+1} \in \mathbb{Q}$ such that

$$
\sum_{i=1}^{k+1} \lambda_{i} \sqrt{a_{i}}=q \in \mathbb{Q}
$$

If $\lambda_{j}=0$, then $-\lambda_{j} \sqrt{a_{j}}+\sum_{i=1}^{k+1} \lambda_{i} \sqrt{a_{i}}=q \in \mathbb{Q}$, and we are done according to the assumption. If $\lambda_{j} \neq 0$ for all j, then we have

$$
\sum_{i=1}^{k} \lambda_{i} \sqrt{a_{i}}=q-\lambda_{k+1} \sqrt{a_{k+1}}
$$

Clearly, $q-\lambda_{k+1} \sqrt{a_{k+1}}$ is a root of a irreducible quadratic polynomial $g \in \mathbb{Q}[x]$. And the polynomial must have another root which is $q+\lambda_{k+1} a_{k+1}$.

Also, the polynomial

$$
f=\prod\left(x-\left(\pm \lambda_{1} \sqrt{a_{1}}+ \pm \lambda_{2} \sqrt{a_{2}}+\cdots+ \pm \lambda_{n} \sqrt{a_{n}}\right)\right)
$$

is also in $\mathbb{Q}[x]$ by induction.
Also,

$$
\begin{aligned}
f\left(q-\lambda_{k+1} \sqrt{a_{k+1}}\right) & =f\left(\sum_{i=1}^{k+1} \lambda_{i} \sqrt{a_{i}}\right) \\
& =0
\end{aligned}
$$

As g is irreducible over \mathbb{Q}, g must divides f. Thus

$$
f\left(q+\lambda_{k+1} \sqrt{a_{k+1}}\right)=0
$$

Thus, there exits $\alpha_{1}, \alpha_{2} \ldots \alpha_{n}$ which is either 1 or -1 such that

$$
\sum_{i=1}^{k} \alpha_{i} \lambda_{i} \sqrt{a_{i}}=q+\lambda_{k+1} \sqrt{a_{k+1}}
$$

Thus

$$
\begin{gathered}
\left\{\begin{array}{l}
\sum_{i=1}^{k} \alpha_{i} \lambda_{i} \sqrt{a_{i}}=q+\lambda_{k+1} \sqrt{a_{k+1}} \\
\sum_{i=1}^{k} \lambda_{i} \sqrt{a_{i}}=q-\lambda_{k+1} \sqrt{a_{k+1}}
\end{array}\right. \\
\sum_{i=1}^{k} \alpha_{i} \lambda_{i} \sqrt{a_{i}}+\sum_{i=1}^{k} \lambda_{i} \sqrt{a_{i}}=q+\lambda_{k+1} \sqrt{a_{k+1}}+q-\lambda_{k+1} \sqrt{a_{k+1}} \\
\sum_{i=1}^{k}\left(\alpha_{i}+1\right) \lambda_{i} \sqrt{a_{i}}=2 q \in \mathbb{Q}
\end{gathered}
$$

By the induction assumption, we have $\left(\alpha_{i}+1\right) \lambda_{i}=0$ for all $i \leq k$. As $\lambda_{i} \neq 0$ for all i, we have $\alpha_{i}=-1$ for all $i \leq k$.

Thus,

$$
\sum_{i=1}^{k}\left(\alpha_{i}+1\right) \lambda_{i} \sqrt{a_{i}}=0
$$

which implies $q=0$.
Thus,

$$
\begin{aligned}
\sum_{i=1}^{k+1} \lambda_{i} \sqrt{a_{i}} & =0 \\
\sqrt{a_{k+1}}\left(\sum_{i=1}^{k+1} \lambda_{i} \sqrt{a_{i}}\right) & =0 \\
\sum_{i=1}^{k} \lambda_{i} \sqrt{a_{k+1} a_{i}} & =-\lambda_{k+1} a_{k+1} \in \mathbb{Q}
\end{aligned}
$$

The only thing left to proof is that $a_{k+1} a_{i}, i \leq k$ satisfy the assumption in the question, and then the induction assumption will apply, which proves that $\lambda_{i}=0, i \leq k$.

Given any $i<j$, we have

$$
\begin{aligned}
\sqrt{\frac{a_{j} a_{k+1}}{a_{i} a_{k+1}}} & =\sqrt{\frac{a_{j}}{a_{i}}} \notin \mathbb{Q} \\
\sqrt{a_{j} a_{k+1}} & =a_{k+1} \sqrt{\frac{a_{j}}{a_{k+1}}} \notin \mathbb{Q}
\end{aligned}
$$

As, we does not use any special property of \mathbb{Q} other then the fact that it is a field. So, the proof should be valid for any field \mathbb{F} that characteristic equals 0 , if we rephrase the question in term of \mathbb{F}.

Question 0.3. Given n distinct element $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}$, let b_{i} be a root of $x^{2}-a_{i}$ for all i. And $b_{i} b_{j}^{-1} \notin \mathbb{F}$ for all $i \neq j$, and $b_{i} \notin \mathbb{F}$ for all i. Then given $\lambda_{1}, \lambda_{2} \ldots \lambda_{n} \in \mathbb{F}, \sum_{i=0}^{n} \lambda_{i} b_{i} \in \mathbb{F}$ if and only if $\lambda_{i}=0$ for all i.

If we try to shift b_{k} to $b_{k}+c_{k}$ such that $c_{k} \in \mathbb{F}$, then the result clearly still stand. So, the previous question can be generalised a bit.

Question 0.4. Given n distinct irreducible quadratic polynomial $f_{1}, f_{2} \ldots f_{n}$ in $\mathbb{F}[x]$.
And given any $i \neq j, f_{j}$ does not have root in $\mathbb{F}[x] / f_{i}$.
And b_{i} be all roots of f_{i} for all i. Then given $\lambda_{1}, \lambda_{2} \ldots \lambda_{n} \in \mathbb{F}, \sum_{i=0}^{n} \lambda_{i} b_{i} \in \mathbb{F}$ if and only if $\lambda_{i}=0$ for all i.

If we are not satisfied with the quadratic polynomials, we can try to generalise the question to any polynomial. However, we may need to have a more strict condition on the roots.

Question 0.5. Given n distinct irreducible polynomial $f_{1}, f_{2} \ldots f_{n}$ in $\mathbb{F}[x]$ with orders greater or equal than 2.

Given any $i \neq j . f_{j}$ does not have root in $\mathbb{F}[x] / f_{i}$.
And b_{i} be all roots of f_{i} for all i. Then given $\lambda_{1}, \lambda_{2} \ldots \lambda_{n} \in \mathbb{F}, \sum_{i=0}^{n} \lambda_{i} b_{i, 1} \in \mathbb{F}$ if and only if $\lambda_{i}=0$ for all i.

To prove the above question, we need another definition and some relating lemma.
Definition 0.1. Given a polynomial $f(x) \in \mathbb{F}[x]$,

$$
f(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}
$$

Define the derivative $f^{\prime}(x)$ of $f(x)$ as

$$
f^{\prime}(x)=n x^{n-1}+(n-1) a_{1} x^{n-2}+(n-2) a_{2} x^{n-3}+\cdots+2 a_{n-2} x+a_{n-1}
$$

Through some simple calculation, we can prove the following lemma.
Lemma 0.1. Given polynomials $f(x), g(x) \in \mathbb{F}[x]$,

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Lemma 0.2. Given a irreducible polynomial $f(x) \in \mathbb{F}[x]$, and a field \mathbb{K}, such that $\mathbb{F} \subseteq \mathbb{K}$ and $f(x)$ can be factorized into product of linear factors in \mathbb{K}.

Chose a root α of $f(x)$ in \mathbb{K}. Then $(x-\alpha)^{2}$ divides $f(x)$ in \mathbb{K}, if and only if $f^{\prime}(x)=0$.
As $f^{\prime}(x)$ is still a polynomial in $\mathbb{F}[x]$, and we can choose arbitrary \mathbb{K}. This lemma implies that irreducible polynomial $f(x)$ have distinct roots if and only if $f^{\prime}(x) \neq 0$.

Proof. If $(x-\alpha)^{2}$ divides $f(x)$ in \mathbb{K}.
Let,

$$
f(x)=(x-\alpha)^{2} g(x)
$$

Then,

$$
f^{\prime}(x)=2(x-\alpha) g(x)+(x-\alpha)^{2} g^{\prime}(x)
$$

Then $f^{\prime}(\alpha)=0$. As $f(x)$ is irreducible, and $f(x)$ and $f^{\prime}(x)$ have common root. So, $f(x)$ divides $f^{\prime}(x)$.

As, the degree of $f^{\prime}(x)$ is less than $f(x)$, then $f^{\prime}(x)=0$.
Conversely, if $f^{\prime}(x)=0$.
Let,

$$
f(x)=(x-\alpha) g(x)
$$

Then,

$$
f^{\prime}(x)=g(x)+(x-\alpha) g^{\prime}(x)
$$

Then,

$$
\begin{aligned}
0 & =f^{\prime}(\alpha) \\
& =g(\alpha)+(\alpha-\alpha) g^{\prime}(\alpha) \\
& =g(\alpha)
\end{aligned}
$$

So, α is a root of $g(x)$.
Thus, $(x-\alpha)^{2}$ divides $f(x)$ in \mathbb{K}.

Lemma 0.3. Given distinct irreducible polynomials $f(x), g(x) \in \mathbb{F}[x]$, where the characteristic of \mathbb{F} equals 0 .

Chose any field \mathbb{K}, such that $\mathbb{F} \subseteq \mathbb{K}$, and $f(x)$ and $g(x)$ can be factorized into product of linear factors in \mathbb{K}.

Let $a_{1}, a_{2} \ldots a_{n}$ be all roots of $f(x)$ in \mathbb{K}, and $b_{1}, b_{2} \ldots b_{m}$ be all roots of $g(x)$ in \mathbb{K}.
Then,

$$
h(x)=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(x-\left(a_{i}+b_{j}\right)\right)
$$

have coefficients in \mathbb{F},

