7 Days0Site 7 Days0
30 Days0Site 30 Days0
Total0Site Total0

Addition Of Algebraic Element

Date: 2023/06/25
Last Updated: 2023-11-26T21:30:00.000Z
Categories: Math
Tags: Math, Galois Theory, Field Theory, Notes
Read Time: 4 minutes

This is some generalization of a question.

Link to the pdf file: Addition Of Algebraic Element

Link to the source code: Addition Of Algebraic Element

::: question Question 1. Proof that 1+2+3+n\sqrt{1} + \sqrt{2} + \sqrt{3} \dots + \sqrt{n} for n>2n > 2 is irrational. :::

However, if we consider the linear combination of 1\sqrt{1}, 2\sqrt{2}, 3\sqrt{3} \dots n\sqrt{n} over Q\mathbb{Q}, then it is likely that we will get a similar result as we kick out some special cases.

::: question Question 2. Given nn positive integers, a1<a2<<ana_1 < a_2 < \dots < a_n, such that ajaiQ\sqrt{\frac{a_{j}}{a_{i}}} \notin \mathbb{Q} for all i<ji < j and aiQ\sqrt{a_{i}} \notin \mathbb{Q} for all ii. Also given λ1,λ2λnQ\lambda_{1}, \lambda_{2} \dots \lambda_{n} \in \mathbb{Q}. Prove that i=1nλiaiQ\sum_{i=1}^{n} \lambda_{i} \sqrt{a_{i}} \in \mathbb{Q} if and only if λ1=λ2==λn=0\lambda_{1} = \lambda_{2} = \dots = \lambda_{n} = 0. :::

::: proof Proof. Suppose this stand for n=kn=k, then it is suffice to prove n=k+1n=k+1.

Suppose there exist λ1,λ2λk+1Q\lambda_{1}, \lambda_{2} \dots \lambda_{k+1} \in \mathbb{Q} such that i=1k+1λiai=qQ\sum_{i=1}^{k+1} \lambda_{i}\sqrt{a_{i}} = q \in \mathbb{Q}

If λj=0\lambda_{j} = 0, then λjaj+i=1k+1λiai=qQ-\lambda_{j}\sqrt{a_{j}} + \sum_{i=1}^{k+1} \lambda_{i}\sqrt{a_{i}} = q \in \mathbb{Q}, and we are done according to the assumption.

If λj0\lambda_{j} \neq 0 for all jj, then we have i=1kλiai=qλk+1ak+1\sum_{i=1}^{k} \lambda_{i}\sqrt{a_{i}} = q - \lambda_{k+1}\sqrt{a_{k+1}}

Clearly, qλk+1ak+1q - \lambda_{k+1}\sqrt{a_{k+1}} is a root of a irreducible quadratic polynomial gQ[x]g \in \mathbb{Q}[x]. And the polynomial must have another root which is q+λk+1ak+1q + \lambda_{k+1}a_{k+1}.

Also, the polynomial f=(x(±λ1a1+±λ2a2++±λnan))f = \prod (x - ( \pm \lambda_{1}\sqrt{a_{1}} + \pm \lambda_{2}\sqrt{a_{2}} + \dots + \pm \lambda_{n}\sqrt{a_{n}} )) is also in Q[x]\mathbb{Q}[x] by induction.

Also,

f(qλk+1ak+1)=f(i=1k+1λiai)=0\begin{aligned} f( q - \lambda_{k+1}\sqrt{a_{k+1}} ) &= f( \sum_{i=1}^{k+1} \lambda_{i}\sqrt{a_{i}} ) \\ &= 0 \end{aligned}

As gg is irreducible over Q\mathbb{Q}, gg must divides ff. Thus f(q+λk+1ak+1)=0f( q + \lambda_{k+1}\sqrt{a_{k+1}} ) = 0

Thus, there exits α1,α2αn\alpha_{1}, \alpha_{2} \dots \alpha_{n} which is either 11 or 1-1 such that i=1kαiλiai=q+λk+1ak+1\sum_{i=1}^{k} \alpha_{i} \lambda_{i}\sqrt{a_{i}} = q + \lambda_{k+1}\sqrt{a_{k+1}}

Thus

{i=1kαiλiai=q+λk+1ak+1i=1kλiai=qλk+1ak+1\begin{cases} \sum_{i=1}^{k} \alpha_{i} \lambda_{i}\sqrt{a_{i}} = q + \lambda_{k+1}\sqrt{a_{k+1}} \\ \sum_{i=1}^{k} \lambda_{i}\sqrt{a_{i}} = q - \lambda_{k+1}\sqrt{a_{k+1}} \end{cases} i=1kαiλiai+i=1kλiai=q+λk+1ak+1+qλk+1ak+1i=1k(αi+1)λiai=2qQ\begin{aligned} \sum_{i=1}^{k} \alpha_{i} \lambda_{i}\sqrt{a_{i}} + \sum_{i=1}^{k} \lambda_{i}\sqrt{a_{i}} &= q + \lambda_{k+1}\sqrt{a_{k+1} }+ q - \lambda_{k+1}\sqrt{a_{k+1}} \\ \sum_{i=1}^{k} ( \alpha_{i} + 1 ) \lambda_{i}\sqrt{a_{i}} &= 2q \in \mathbb{Q} \\ \end{aligned}

By the induction assumption, we have (αi+1)λi=0(\alpha_{i} + 1)\lambda_{i} = 0 for all iki \le k. As λi0\lambda_{i} \neq 0 for all ii, we have αi=1\alpha_{i} = -1 for all iki \le k.

Thus,

i=1k(αi+1)λiai=0\begin{aligned} \sum_{i=1}^{k} ( \alpha_{i} + 1 ) \lambda_{i}\sqrt{a_{i} } &= 0 \end{aligned}

which implies q=0q = 0.

Thus,

i=1k+1λiai=0ak+1(i=1k+1λiai)=0i=1kλiak+1ai=λk+1ak+1Q\begin{aligned} \sum_{i=1}^{k+1} \lambda_{i}\sqrt{a_{i}} &= 0 \\ \sqrt{a_{k+1}} (\sum_{i=1}^{k+1} \lambda_{i}\sqrt{a_{i}}) &= 0 \\ \sum_{i=1}^{k} \lambda_{i}\sqrt{a_{k+1}a_{i}} &= - \lambda_{k+1} a_{k+1} \in \mathbb{Q}\\ \end{aligned}

The only thing left to proof is that ak+1ai,ika_{k+1}a_{i}, i \le k satisfy the assumption in the question, and then the induction assumption will apply, which proves that λi=0,ik\lambda_{i} = 0, i \le k.

Given any i<ji < j, we have

ajak+1aiak+1=ajaiQajak+1=ak+1ajak+1Q\begin{aligned} \sqrt{\frac{a_{j}a_{k+1}}{a_{i}a_{k+1}}} &= \sqrt{\frac{a_{j}}{a_{i}}} \notin \mathbb{Q} \\ \sqrt{a_{j}a_{k+1}} &= a_{k+1} \sqrt{\frac{a_{j}}{a_{k+1}}} \notin \mathbb{Q} \end{aligned}

◻ :::

As, we does not use any special property of Q\mathbb{Q} other then the fact that it is a field. So, the proof should be valid for any field F\mathbb{F} that characteristic equals 0, if we rephrase the question in term of F\mathbb{F}.

::: question Question 3. Given nn distinct element a1,a2,,anFa_{1}, a_{2}, \dots, a_{n} \in \mathbb{F}, let bib_{i} be a root of x2aix^{2} - a_{i} for all ii. And bibj1Fb_{i}b_{j}^{-1} \notin \mathbb{F} for all iji \neq j, and biFb_{i} \notin \mathbb{F} for all ii. Then given λ1,λ2λnF\lambda_{1}, \lambda_{2} \dots \lambda_{n} \in \mathbb{F}, i=0nλibiF\sum_{i=0}^{n} \lambda_{i}b_{i} \in \mathbb{F} if and only if λi=0\lambda_{i} = 0 for all ii. :::

If we try to shift bkb_{k} to bk+ckb_{k} + c_{k} such that ckFc_{k} \in \mathbb{F}, then the result clearly still stand. So, the previous question can be generalised a bit.

::: question Question 4. Given nn distinct irreducible quadratic polynomial f1,f2fnf_{1}, f_{2} \dots f_{n} in F[x]\mathbb{F}[x].

And given any iji \neq j, fjf_{j} does not have root in F[x]/fi\mathbb{F}[x]/f_{i}.

And bib_{i} be all roots of fif_{i} for all ii. Then given λ1,λ2λnF\lambda_{1}, \lambda_{2} \dots \lambda_{n} \in \mathbb{F}, i=0nλibiF\sum_{i=0}^{n} \lambda_{i}b_{i} \in \mathbb{F} if and only if λi=0\lambda_{i} = 0 for all ii. :::

If we are not satisfied with the quadratic polynomials, we can try to generalise the question to any polynomial. However, we may need to have a more strict condition on the roots.

::: question Question 5. Given nn distinct irreducible polynomial f1,f2fnf_{1}, f_{2} \dots f_{n} in F[x]\mathbb{F}[x] with orders greater or equal than 2.

Given any iji \neq j. fjf_{j} does not have root in F[x]/fi\mathbb{F}[x]/f_{i}.

And bib_{i} be all roots of fif_{i} for all ii. Then given λ1,λ2λnF\lambda_{1}, \lambda_{2} \dots \lambda_{n} \in \mathbb{F}, i=0nλibi,1F\sum_{i=0}^{n} \lambda_{i}b_{i,1} \in \mathbb{F} if and only if λi=0\lambda_{i} = 0 for all ii. :::

To prove the above question, we need another definition and some relating lemma.

::: definition Definition 1. Given a polynomial f(x)F[x]f(x) \in \mathbb{F}[x], f(x)=xn+a1xn1+a2xn2++an1x+anf(x) = x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \dots + a_{n-1}x + a_{n}

Define the derivative f(x)f'(x) of f(x)f(x) as f(x)=nxn1+(n1)a1xn2+(n2)a2xn3++2an2x+an1f'(x) = n x^{n-1} + (n-1)a_{1}x^{n-2} + (n-2)a_{2}x^{n-3} + \dots + 2a_{n-2}x + a_{n-1} :::

Through some simple calculation, we can prove the following lemma.

::: lemma Lemma 1. Given polynomials f(x),g(x)F[x]f(x), g(x) \in \mathbb{F}[x], (f(x)g(x))=f(x)g(x)+f(x)g(x)(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) :::

::: lemma Lemma 2. Given a irreducible polynomial f(x)F[x]f(x) \in \mathbb{F}[x], and a field K\mathbb{K}, such that FK\mathbb{F} \subseteq \mathbb{K} and f(x)f(x) can be factorized into product of linear factors in K\mathbb{K}.

Chose a root α\alpha of f(x)f(x) in K\mathbb{K}. Then (xα)2(x-\alpha)^2 divides f(x)f(x) in K\mathbb{K}, if and only if f(x)=0f'(x) = 0. :::

As f(x)f'(x) is still a polynomial in F[x]\mathbb{F}[x], and we can choose arbitrary K\mathbb{K}. This lemma implies that irreducible polynomial f(x)f(x) have distinct roots if and only if f(x)0f'(x) \neq 0.

::: proof Proof. If (xα)2(x-\alpha)^2 divides f(x)f(x) in K\mathbb{K}.

Let, f(x)=(xα)2g(x)f(x) = (x-\alpha)^{2}g(x)

Then, f(x)=2(xα)g(x)+(xα)2g(x)f'(x) = 2(x-\alpha)g(x) + (x-\alpha)^{2}g'(x)

Then f(α)=0f'(\alpha) = 0. As f(x)f(x) is irreducible, and f(x)f(x) and f(x)f'(x) have common root. So, f(x)f(x) divides f(x)f'(x).

As, the degree of f(x)f'(x) is less than f(x)f(x), then f(x)=0f'(x) = 0.

Conversely, if f(x)=0f'(x) = 0.

Let, f(x)=(xα)g(x)f(x) = (x-\alpha)g(x)

Then, f(x)=g(x)+(xα)g(x)f'(x) = g(x) + (x-\alpha)g'(x)

Then,

0=f(α)=g(α)+(αα)g(α)=g(α)\begin{aligned} 0 & = f'(\alpha) \\ & = g(\alpha) + (\alpha-\alpha)g'(\alpha) \\ & = g(\alpha) \end{aligned}

So, α\alpha is a root of g(x)g(x).

Thus, (xα)2(x-\alpha)^2 divides f(x)f(x) in K\mathbb{K}. ◻ :::

::: lemma Lemma 3. Given distinct irreducible polynomials f(x),g(x)F[x]f(x), g(x) \in \mathbb{F}[x], where the characteristic of F\mathbb{F} equals 00.

Chose any field K\mathbb{K}, such that FK\mathbb{F} \subseteq \mathbb{K}, and f(x)f(x) and g(x)g(x) can be factorized into product of linear factors in K\mathbb{K}.

Let a1,a2ana_{1}, a_{2} \dots a_{n} be all roots of f(x)f(x) in K\mathbb{K}, and b1,b2bmb_{1}, b_{2} \dots b_{m} be all roots of g(x)g(x) in K\mathbb{K}.

Then, h(x)=i=1nj=1m(x(ai+bj))h(x) = \prod_{i=1}^{n}\prod_{j=1}^{m}(x-(a_{i} + b_{j})) have coefficients in F\mathbb{F}, :::